The preference for GT-rich DNA by the yeast Rad51 protein defines a set of universal pairing sequences.
نویسندگان
چکیده
The Rad51 protein of Saccharomyces cerevisiae is a eukaryotic homolog of the RecA protein, the prototypic DNA strand-exchange protein of Escherichia coli. RAD51 gene function is required for efficient genetic recombination and for DNA double-strand break repair. Recently, we demonstrated that RecA protein has a preferential affinity for GT-rich DNA sequences-several of which exhibit enhanced RecA protein-promoted homologous pairing activity. The fundamental similarity between the RecA and Rad51 proteins suggests that Rad51 might display an analogous bias. Using in vitro selection, here we show that the yeast Rad51 protein shares the same preference for GT-rich sequences as its prokaryotic counterpart. This bias is also manifest as an increased ability of Rad51 protein to promote the invasion of supercoiled DNA by homologous GT-rich single-stranded DNA, an activity not previously described for the eukaryotic pairing protein. We propose that the preferred utilization of GT-rich sequences is a conserved feature among all homologs of RecA protein, and that GT-rich regions are loci for increased genetic exchange in both prokaryotes and eukaryotes.
منابع مشابه
The DNA binding and pairing preferences of the archaeal RadA protein demonstrate a universal characteristic of DNA strand exchange proteins.
The archaeal RadA protein is a homologue of the Escherichia coli RecA and Saccharomyces cerevisiae Rad51 proteins and possesses the same biochemical activities. Here, using in vitro selection, we show that the Sulfolobus solfataricus RadA protein displays the same preference as its homologues for binding to DNA sequences that are rich in G residues, and under-represented in A and C residues. Th...
متن کاملIn vitro selection of preferred DNA pairing sequences by the Escherichia coli RecA protein.
The RecA protein and other DNA strand exchange proteins are characterized by their ability to bind and pair DNA in a sequence-independent manner. In vitro selection experiments demonstrate, unexpectedly, that RecA protein has a preferential affinity for DNA sequences rich in GT composition. Such GT-rich sequences are present in loci that display increased recombinational activity in both eukary...
متن کاملHuman Rad51 protein displays enhanced homologous pairing of DNA sequences resembling those at genetically unstable loci
DNA strand exchange, the central step of homologous recombination, is considered to occur approximately independently of DNA sequence content. However, certain prokaryotic and eukaryotic genomic loci display either an enhanced or reduced frequency of genetic exchange. Here we show that the Homo sapiens DNA strand exchange protein, HsRad51, shows a preference for binding to single-stranded DNA s...
متن کاملProbing the DNA sequence specificity of Escherichia coli RECA protein
Escherichia coli RecA protein catalyzes the central DNA strand-exchange step of homologous recombination, which is essential for the repair of double-stranded DNA breaks. In this reaction, RecA first polymerizes on single-stranded DNA (ssDNA) to form a right-handed helical filament with one monomer per 3 nt of ssDNA. RecA generally binds to any sequence of ssDNA but has a preference for GT-rich...
متن کاملStructural Characteristics of Stable Folding Intermediates of Yeast Iso-1-Cytochrome-c
Cytochrome-c (cyt-c) is an electron transport protein, and it is present throughout the evolution. More than 280 sequences have been reported in the protein sequence database (www.uniprot.org). Though sequentially diverse, cyt-c has essentially retained its tertiary structure or fold. Thus a vast data set of varied sequences with retention of similar structure and fun...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genes & development
دوره 11 24 شماره
صفحات -
تاریخ انتشار 1997